


Room Temperature Ring-Opening Metathesis of Pyridines by a Transient Ti≡C Linkage [*J. Am. Chem. Soc.* 2006, *128*, 6798−6799]. Brad C. Bailey, Hongjun Fan, John C. Huffman, Mu-Hyun Baik,* and Daniel J. Mindiola*

Page 6799. An incorrect dielectric constant was mistakenly used to simulate the pyridine solvent. When the correct dielectric constant $\epsilon = 12.3$ is used, the reported solution phase energies

Figure 2. Proposed mechanism for the ROM of pyridine. Only core structures are shown for illustration. All energies are solution phase free energies, and all bond lengths are given in Å. [Ti] represents the (PNP)Ti framework, and solvation calculations were carried out at the optimized gas-phase geometry employing the dielectric constant of $\epsilon = 12.3$ (pyridine).

change slightly. The corrected energies of all species discussed in the paper are summarized in the revised Figures 2 and 3. While these changes do not affect the conclusions and observed trends in a meaningful way, the authors apologize for the error.

Figure 3. Proposed mechanism of the ROM of pyridine. All energies are solution phase free energies. The dotted line represents the conversion of 7 directly to 8, as also depicted in Figure 2.

JA071777W

10.1021/ja071777w Published on Web 05/16/2007